Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Networks

نویسندگان

  • Hua He
  • Kevin Gimpel
  • Jimmy J. Lin
چکیده

Modeling sentence similarity is complicated by the ambiguity and variability of linguistic expression. To cope with these challenges, we propose a model for comparing sentences that uses a multiplicity of perspectives. We first model each sentence using a convolutional neural network that extracts features at multiple levels of granularity and uses multiple types of pooling. We then compare our sentence representations at several granularities using multiple similarity metrics. We apply our model to three tasks, including the Microsoft Research paraphrase identification task and two SemEval semantic textual similarity tasks. We obtain strong performance on all tasks, rivaling or exceeding the state of the art without using external resources such as WordNet or parsers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

UMD-TTIC-UW at SemEval-2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks for Textual Similarity Measurement

We describe an attention-based convolutional neural network for the English semantic textual similarity (STS) task in the SemEval2016 competition (Agirre et al., 2016). We develop an attention-based input interaction layer and incorporate it into our multiperspective convolutional neural network (He et al., 2015), using the PARAGRAM-PHRASE word embeddings (Wieting et al., 2016) trained on parap...

متن کامل

AttnConvnet at SemEval-2018 Task 1: Attention-based Convolutional Neural Networks for Multi-label Emotion Classification

In this paper, we propose an attention-based classifier that predict multiple emotions of a given sentence. Our model imitates human’s two-step procedure of sentence understanding and it can effectively represent and classify sentences. With emoji-to-meaning preprocessing and extra lexicon utilization, we further improve the model performance. We train and evaluate our model with data provided ...

متن کامل

Dependency-based Convolutional Neural Networks for Sentence Embedding

In sentence modeling and classification, convolutional neural network approaches have recently achieved state-of-the-art results, but all such efforts process word vectors sequentially and neglect long-distance dependencies. To exploit both deep learning and linguistic structures, we propose a tree-based convolutional neural network model which exploit various long-distance relationships betwee...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015